Install Remote Browser[remoteview], And Coursera Robotics-Flight week 2

1 minute read

remote chrome debuging

  • need ws resever proxy to ws
  • trying to use ipv6 access browser directly
  • trying to ssh tunnel mapping 9222 to 9223
  • still can not fix ws problem

Try to use remoteview[base on npm]

  • here is the tutorial
  • trying to install remoteview by npm
    • npm i remoteview
      • but can not access the npm offical website
    • trying to npm pack and npm install, still need web access permission.
    • trying download all remoteview package [too complex, I give it up]

准备看点Coursera

  • week 2
    • Coursera: robotics-flight
    • Euler angle
      • 对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现
      • 20210722161724 20210722161724
      • rotation matrix
      • 从左到右依次代表绕着z轴的旋转、绕着交点线的旋转、绕着Z轴的旋转。
      • rotation matrix
    • Rodrigues’ formula [罗德里格旋转公式 at 1840]
      • 是在给定转轴和旋转角度后,旋转一个向量的有效算法
      • here’s $\mathbf{k}$ is unit vector
      • $\mathbf{v_{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k}\cdotp\mathbf{v}(1-\cos\theta))$
        • proof
        • wiki $\begin{aligned} \mathbf{v_{rot}} &= \mathbf{v_{\parallel rot}} + \mathbf{v_{\perp rot}}\\ &= \mathbf{v_{\parallel}} + \cos(\theta)\mathbf{v_{\perp}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\ &= \mathbf{v_{\parallel}} + \cos(\theta)(\mathbf{v} - \mathbf{v_{\parallel}}) + \sin(\theta)\mathbf{k}\times\mathbf{v} \\ &= \cos(\theta)\mathbf{v} + (1-\cos(\theta))\mathbf{v_{\parallel}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\ &= \cos(\theta)\mathbf{v} + (1-\cos(\theta))(\mathbf{k}\cdotp\mathbf{v})\mathbf{k} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\ \end{aligned}$
        • calculator the rotation matirx given by $\mathbf{k}$ and $\theta$
        • wiki
        • wiki
        • wiki
        • in term of the matrix exponential
          • wiki
        • python code
        def make_rotation_matrix(k, theta):
          x, y, z = k
          I = np.eye(3)
          K = np.matrix([
              [0, -z, y],
              [z, 0, -x],
              [-y, x, 0]
          ])
          R = I + np.sin(theta) * K + (1 - np.cos(theta)) * K * K
          return R
        
    • Matrix exponential[矩阵指数]
    • Derivative of the rotation matrix
      • $$ \begin{aligned} \frac{d}{dt}(A\pm B) &= \dot A \pm \dot B\\ \frac{d}{dt}(AB) &= \dot A B + A \dot B\\ \frac{d}{dt}(A(\theta(t))) &= \frac{dA}{d\theta}\dot \theta \end{aligned} $$
      • Angular velocity
        • $R^T\dot R = \dot R R^T$
      • Skew - Symmetric Matrices and the Hat Operator
        • symmetric matrix: $A^T = A$
        • skey-symmetric matrix: $A^T = -A$
        • $$ \hat a = \hat{\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}} = \begin{bmatrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{bmatrix} $$
        • $\mathbf{u}\times\mathbf{v} = \hat{\mathbf{u}}\mathbf{v}$
        • $\hat\omega^b = R^T\dot R$
        • $\hat\omega^s = \dot RR^T$
    • Newton-Euler Equations
    • Finish week home work