remote chrome debuging
- need ws resever proxy to ws
- trying to use ipv6 access browser directly
- trying to ssh tunnel mapping 9222 to 9223
- still can not fix ws problem
Try to use remoteview[base on npm]
- here is the tutorial
- trying to install remoteview by npm
- npm i remoteview
- but can not access the npm offical website
- trying to
npm pack
and npm install, still need web access permission
.
- trying download all remoteview package [too complex, I give it up]
准备看点Coursera
- week 2
- Coursera: robotics-flight
- Euler angle
- 对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现
-
- 从左到右依次代表绕着z轴的旋转、绕着交点线的旋转、绕着Z轴的旋转。
- Rodrigues’ formula [罗德里格旋转公式 at 1840]
- 是在给定转轴和旋转角度后,旋转一个向量的有效算法
- here’s $\mathbf{k}$ is unit vector
- $\mathbf{v_{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k}\cdotp\mathbf{v}(1-\cos\theta))$
- proof
-
$\begin{aligned}
\mathbf{v_{rot}} &= \mathbf{v_{\parallel rot}} + \mathbf{v_{\perp rot}}\\
&= \mathbf{v_{\parallel}} + \cos(\theta)\mathbf{v_{\perp}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \mathbf{v_{\parallel}} + \cos(\theta)(\mathbf{v} - \mathbf{v_{\parallel}}) + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \cos(\theta)\mathbf{v} + (1-\cos(\theta))\mathbf{v_{\parallel}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \cos(\theta)\mathbf{v} + (1-\cos(\theta))(\mathbf{k}\cdotp\mathbf{v})\mathbf{k} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
\end{aligned}$
- calculator the rotation matirx given by $\mathbf{k}$ and $\theta$
- in term of the matrix exponential
- python code
def make_rotation_matrix(k, theta):
x, y, z = k
I = np.eye(3)
K = np.matrix([
[0, -z, y],
[z, 0, -x],
[-y, x, 0]
])
R = I + np.sin(theta) * K + (1 - np.cos(theta)) * K * K
return R
- Matrix exponential[矩阵指数]
- Derivative of the rotation matrix
- Newton-Euler Equations
- Finish week home work