remote chrome debuging
  - need ws resever proxy to ws
 
  - trying to use ipv6 access browser directly
 
  - trying to ssh tunnel mapping 9222 to 9223
 
  - still can not fix ws problem
 
Try to use remoteview[base on npm]
  - here is the tutorial
 
  - trying to install remoteview by npm
    
      - npm i remoteview
        
          - but can not access the npm offical website
 
        
       
      - trying to 
npm pack and npm install, still need web access permission. 
      - trying download all remoteview package [too complex, I give it up]
 
    
   
准备看点Coursera
  - week 2
    
      - Coursera: robotics-flight
 
      - Euler angle
        
          - 对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现
 
          
 
 
          
 
          - 从左到右依次代表绕着z轴的旋转、绕着交点线的旋转、绕着Z轴的旋转。
 
          
 
        
       
      - Rodrigues’ formula [罗德里格旋转公式 at 1840]
        
          - 是在给定转轴和旋转角度后,旋转一个向量的有效算法
 
          - here’s $\mathbf{k}$  is unit vector
 
          - $\mathbf{v_{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k}\cdotp\mathbf{v}(1-\cos\theta))$
            
              - proof
 
              
$\begin{aligned}
\mathbf{v_{rot}} &= \mathbf{v_{\parallel rot}} + \mathbf{v_{\perp rot}}\\
&= \mathbf{v_{\parallel}} + \cos(\theta)\mathbf{v_{\perp}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \mathbf{v_{\parallel}} + \cos(\theta)(\mathbf{v} - \mathbf{v_{\parallel}}) + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \cos(\theta)\mathbf{v} + (1-\cos(\theta))\mathbf{v_{\parallel}} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
&= \cos(\theta)\mathbf{v} + (1-\cos(\theta))(\mathbf{k}\cdotp\mathbf{v})\mathbf{k} + \sin(\theta)\mathbf{k}\times\mathbf{v} \\
\end{aligned}$ 
              - calculator the rotation matirx given by $\mathbf{k}$ and $\theta$
 
              
 
              
 
              
 
              - in term of the matrix exponential
                
              
 
              - python code
 
            
            def make_rotation_matrix(k, theta):
  x, y, z = k
  I = np.eye(3)
  K = np.matrix([
      [0, -z, y],
      [z, 0, -x],
      [-y, x, 0]
  ])
  R = I + np.sin(theta) * K + (1 - np.cos(theta)) * K * K
  return R
              
           
        
       
      - Matrix exponential[矩阵指数]
        
      
 
      - Derivative of the rotation matrix
        
      
 
      - Newton-Euler Equations
        
      
 
      - Finish week home work